Carson Wu

a
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense image_directory = "/path/to/image/directory" image_size = (256, 256) batch_size = 32 image_generator = ImageDataGenerator(rescale=1./255, validation_split=0.2) train_data = image_generator.flow_from_directory( image_directory, target_size=image_size, batch_size=batch_size, class_mode='binary', subset='training') validation_data = image_generator.flow_from_directory( image_directory, target_size=image_size, batch_size=batch_size, class_mode='binary', subset='validation') model= Sequential([ Conv2D(32, (3, 3), activation='relu', input_shape=(256, 256, 3)), MaxPooling2D((2, 2)), Conv2D(64, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Conv2D(128, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Flatten(), Dense(128, activation='relu'), Dense(1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) history = model.fit(train_data, epochs=10, validation_data=validation_data) plt.plot(history.history['accuracy'], label='accuracy') plt.plot(history.history['val_accuracy'], label='val_accuracy') plt.plot(history.history['loss'], label='loss') plt.plot(history.history['val_loss'], label='val_loss') plt.legend() plt.show()
Image Classifier
Revolutionize fruit classification with our advanced Fruit Classifier, harnessing the power of machine learning and computer vision for accurate fruit image classification. Transforming agriculture, inventory management, and visual search like never before.

Currently Unavailable